Machine learning the quantum-chemical properties of metal-organic frameworks for accelerated materials discovery
![Machine Learning Machine Learning](https://gagliardigroup.uchicago.edu/wp-content/themes/gagliardi-bootstrap/assets/img/icons-research/Machine_Learning_teal.png)
![Reticular Frameworks Reticular Frameworks](https://gagliardigroup.uchicago.edu/wp-content/themes/gagliardi-bootstrap/assets/img/icons-research/Metal_Organic_Frameworks_teal.png)
Full Citation
A. S. Rosen, S. M. Iyer, D. Ray, Z. Yao, A. Aspuru-Guzik, L. Gagliardi, J. M. Notestein, and R. Q. Snurr, Machine learning the quantum-chemical properties of metal-organic frameworks for accelerated materials discovery, Matter, 2021, 4, 1578–1597. DOI: 10.1016/j.matt.2021.02.015